On Supra α– Connectedness in Supra Topological Spaces

Ghufran A. Abbas1, Taha H. Jasim2

$^1,^2$Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq.

1ghufranabas@gmail.com, 2tahahameed91@gmail.com

Abstract

The purpose of this paper is to introduce the concept called supra α– connectedness in supra topological spaces and study some of the properties.

Keywords: supra topological space, supra α– open set, supra α– connected.

DOI: http://doi.org/10.32894/kujss.2019.14.4.1
1. Introduction:

In this paper, we introduces the concept of supra α– connectedness and investigate about their relationships using the concept of continuity.

2. Preliminaries:

The aim of this paper is to study what is called the Supra α– connectedness as well as the effect of some kinds of mapping on its. So we will need the following results and definitions.

Definition 2.1. [1] Let X be a non-empty set. Let $\mu \subseteq P(X) = \{A : A \subseteq X\}$. Then μ is called a supra topology on X if $\emptyset \in \mu, X \in \mu$. If $Y_\lambda \in \mu$ for every $\lambda \in \Lambda$ where Λ is an arbitrary set, then $\bigcup_{\lambda \in \Lambda} Y_\lambda \in \mu$. The pair (X, μ) is called a supra topological space. Each element $A \in \mu$ is called a supra open set in (X, μ). The complement of A is denoted by $A^c = X - A$, which is called a supra closed set in (X, μ).

Definition 2.2. [1] Let (X, μ) be a supra topological space. The supra closure of a set A which is defined by supra– $cl(A) = \cap \{B \subseteq X : B$ is a supra closed set in X such that $A \subseteq B\}$.

The supra interior of a set A is denoted by supra– $Int(A)$ and is defined by supra– $Int(A) = \cup \{U \subseteq X : U$ is a supra open set in X such that $U \subseteq A\}$.

Definition 2.3. [1] Let (X, \mathcal{T}) be a topological space and μ be a supra topology on X. We call μ a supra topology associated with \mathcal{T} if $\mathcal{T} \subseteq \mu$.

Definition 2.4. [2] Let (X, μ) be a supra topological space. A subset A of X is called a supra α– open set in X if $A \subseteq supra \text{ Int}\left(supra \text{ cl}(supra \text{ Int}(A))\right)$ if A is supra open set. The complement of supra α– open set is called a supra α– closed set.

Definition 2.5. [2] Let (X, μ) be a supra topological space. The supra α– closure of a set A is denoted by supra– α– $cl(A)$, and is defined as follows:
Supra- $\alpha- cl(A) = \cap \{B \subseteq X : B$ is supra $\alpha-$ closed set in X such that $A \subseteq B\}$.

The supra $\alpha-$ interior of a set A is denoted by supra- $\alpha-$ $Int(A)$, and is defined by supra- $\alpha-$ $Int(A) = \cup \{U \subseteq X : U$ is supra $\alpha-$ open set in X such that $U \subseteq A\}$. Clearly it is obvious that supra- $\alpha-$ $cl(A)$ is a supra $\alpha-$ closed set. In the same way, supra- $\alpha-$ $Int(A)$ is supra $\alpha-$ open set.

Throughout this paper, (X, \mathcal{T}) and (Y, \mathcal{T}^*) will denoted topological spaces by the researchers. Where μ and μ^* will be their associated supra topologies with \mathcal{T} and \mathcal{T}^* respectively is that $\mathcal{T} \subseteq \mu$ and $\mathcal{T}^* \subseteq \mu^*$.

Theorem 2.6.[2]. Let (X, μ) be a supra topological space. Then every supra open set in X is supra $\alpha-$ open set in X.

The converse of the theorem (2.6) need not be true as shown by the following example.

Example 2.7.[2]. Suppose $X = \{a, b, c\}$ and have the supra topology $\mu = \{\emptyset, X, \{a\}\}$. The set $\{a, b\} \notin \mu$, so the set $\{a, b\}$ is not supra open set in (X, μ). Now since it clearly follows that supra- $\alpha-$ $Int[\supra-\alpha-cl[\supra-\alpha-\mathcal{I}(\{a, b\})]] = \supra-\alpha-\mathcal{I}[\supra-\alpha-cl(\{a\})] = \supra-\alpha-\mathcal{I}((X)] = X$. Therefore it follows that $\{a, b\}$ is a supra $\alpha-$ open set in (X, μ).

Definition 2.8.[2]. A function $f: (X, \mu) \to (Y, \mu^*)$ is called a supra $\alpha-$ continuous function if the inverse image of each supra open set in Y is a supra $\alpha-$ open set in X.

Definition 2.9[3] A function $f: (X, \mu) \to (Y, \mu^*)$ is called $i-$ supra $\alpha-$ continuous if $f^{-1}(Y)$ of each supra $\alpha-$ open subset of Y is supra $\alpha-$ open subset of X.

Definition 2.10[3] A function $f: (X, \mu) \to (Y, \mu^*)$ is called strongly supra $\alpha-$ continuous if the inverse image of every supra $\alpha-$ open subset of Y is supra open in X.

Definition 2.11[3] A function $f: (X, \mu) \to (Y, \mu^*)$ is called perfectly supra $\alpha-$ continuous if the inverse image of every supra $\alpha-$ open subset of Y is both supra open and supra closed in X.

Definition 2.12[3] A function $f: (X, \mu) \to (Y, \mu^*)$ is called totally supra $\alpha-$ continuous if the inverse image of every supra open set in Y is both supra $\alpha-$ closed and supra $\alpha-$ open in X.

Web Site: www.uokirkuk.edu.iq/kujss E-mail: kujss@uokirkuk.edu.iq, kujss.journal@gmail.com
3. Supra α– Connected:

Definition 3.1.[4] A supra topological space (X, μ) is said to be supra connected if X cannot be written as a disjoint union of two non-empty supra open subsets of X. A subset of (X, μ) is supra connected if it is supra connected a subspace.

Definition 3.2 A supra topological space (X, μ) is said to be supra α– connected if X cannot be written as disjoint union of two non-empty supra α– open sets. A subset of (X, μ) is supra α– connected if it is supra α– connected as subspace.

Theorem 3.3
Every supra connected is supra α– connected space.

Proof: Let X be supra connected. To show that X is supra α– connected. Since X is supra connected. Then $X \neq A \cup B$ where A and B are disjoint non-empty supra open sets. Then by Theorem (2.6), we have A and B are disjoint non-empty supra α– open sets. Thus X is supra α– connected.

Theorem 3.4
If $f: (X, \mu) \to (Y, \mu')$ be a surjective and supra α– continuous mapping. Let X be supra α– connected, then Y is supra connected.

Proof:
Suppose Y is not supra connected.

Let $Y = A \cup B$, where A and B are disjoint non-empty supra open sets in Y. Since f is supra α– continuous surjective map, then $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty supra α– open sets in X. This contradicts the fact that X is supra α– connected. Hence Y is supra connected.

Theorem 3.5
Let $f: (X, \mu) \to (Y, \mu')$ be a surjective and strongly supra α– continuous mapping. Let X be supra connected space. Then Y is supra α– connected space.

Proof: Suppose Y is not supra α– connected. Let $Y = A \cup B$, where A and B are disjoint non-empty supra α– open sets in Y.
Since f is strongly supra α– continuous surjective map, then $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty supra open sets in X. This contradicts the fact that X is supra connected. Hence Y is supra α– connected.

Theorem 3.6

If $f: (X, \mu) \rightarrow (Y, \mu^*)$ be a surjective and perfectly supra α– continuous map and X is supra connected, then Y is supra α– connected .

Proof: Suppose Y is not supra α– connected. Let $Y = A \cup B$, where A and B are disjoint non-empty supra α– open sets in Y. Since f is perfectly supra α– continuous surjective map, then $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty supra open sets and supra closed set in X. This contradicts the fact that X is supra connected. Hence Y is supra α– connected .

Theorem 3.7

If $f: (X, \mu) \rightarrow (Y, \mu^*)$ be a surjective and i– supra α– continuous map and X is supra α– connected, then Y is supra α– connected .

Proof: Suppose Y is not supra α– connected. Let $Y = A \cup B$, where A and B are disjoint non-empty supra α– open sets in Y. Since f is i– supra α– continuous surjective map, then $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty supra α– open sets in X. This contradicts the fact that X is supra α– connected. Hence Y is supra α– connected.

Theorem 3.8

If $f: (X, \mu) \rightarrow (Y, \mu^*)$ be a surjective and totally supra α– continuous map and X is supra α– connected, then Y is supra connected.

Proof: Suppose Y is not supra connected. Let $Y = A \cup B$, where A and B are disjoint non-empty supra open sets in Y. Since every supra open set is supra α– open set, A and B are disjoint non-empty supra α– open set in Y. Since f is totally supra α– continuous surjective map, $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-
empty is both supra α– open and supra α– closed in X. This contradicts the fact that X is supra α– connected. Hence Y is supra connected.

Theorem 3.9

Let C and D be subsets of a supra topological space X. Assume that C is supra α– connected and $C \subseteq D$. Further assume that U and V form a separation of D in X. Then either $C \subseteq U$ or $C \subseteq V$.

Proof: Suppose that neither $C \subseteq U$ nor $C \subseteq V$. Then $U \cap C \neq \emptyset$ and $V \cap C \neq \emptyset$. It follows that U and V form a separation of C in X, contradicting that C is supra α– connected. Therefore either $C \subseteq U$ or $C \subseteq V$.

Theorem 3.10

Let C be a supra α– connected subspace in X, and assume that $C \subseteq A \subseteq$ supra α– $cl(C)$, then A is also supra α– connected.

Proof: Suppose that A is not supra α– connected in X, and let U and V form a separation of A in X. Then by 3.9, either $C \subseteq U$ or $C \subseteq V$. We may assume, without loss of generality, that $C \subseteq U$. Hence $C \cap V = \emptyset$. But, since U and V form a separation of A in X, it follows that $A \cap V \neq \emptyset$. Pick $x \in A \cap V$. Now, $x \in A$ and $A \subseteq$ supra α– $cl(C)$ imply $x \in$ supra α– $cl(C)$. But $x \in V$, an open set in X which is disjoint from C. So x cannot be in the supra α– closure of C, yielding a contradiction. Thus, it follows that A is supra α– connected.

References:

